INVARIANT ADENOSINE RESIDUES STABILIZE tRNA D STEMS

D. ALKEMA, R. A. BELL, P. A. HADER and Thomas NEILSON

Departments of Biochemistry and Chemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada

Received 8 October 1981

1. Introduction

Inspection of the sequences of reported tRNAs [1] reveals 2 adenosine residues that nearly always (166 out of 177 cases) occupy positions 14 and 21 at the D-loop-stem junction. Apparently, the nature of these residues has been conserved and perhaps they are involved in some tRNA function, for example, aminoacyl-tRNA synthetase recognition [2,3]. Their presence may also satisfy a structural aspect controlling native conformation, namely an invariant A · U base pair [4,5]. This report resolves the controversy by proposing that the invariant adenosines stabilize D-stem duplexes, features of secondary cloverleaf structure [6]. D-Stems contain only 3 or 4 Watson-Crick base pairs while other stem duplexes have 5 or more. Melting studies have shown D-stems to be the least stable regions in tRNAs [7].

Three-dimensional tertiary structure of yeast tRNA [4] shows adenosine residues 14 and 21 (see fig.1), to be coplanar, and each base-stacked (a vertical electronic interaction between aromatic rings) to the adjacent D-stem duplex [5]. Steric tolerance exists, however, since the adenosine at position 14 is displaced within the helix as a result of its participation in a tertiary Sobell-type $A \cdot U$ base pair [8] with an invariant uridine residue at position 8. This displacement from the normal RNA-A helical geometry at the ends of a duplex can be considered as partial strand unwinding. Extension of base stacking to the invariant adenosine residues, is still possible, and therefore enhances overall D-stem stability.

2. Materials and methods

The oligoribonucleotides used here were synthesized by the phosphotriester method developed in [9]. Complete details for preparation of these oligomers

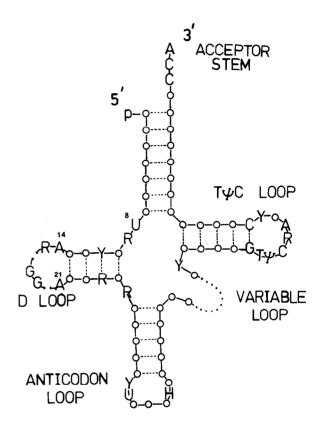


Fig.1. Adapted from a diagram in [5] indicating positions of invariant and semi-invariant bases in tRNA sequences other than initiator tRNAs. Y stands for pyrimidine, R for purine, H for hypermodified purine. Dotted regions represent areas containing a variable number of nucleotides in tRNA sequences. Numbering system corresponds to that of yeast tRNA Phe.

will appear elsewhere. 1H NMR spectra were obtained in the Fourier transform mode of Bruker WH-90, WM-250 and WH-400 spectrometers equipped with quadrature detection. Probe temperatures were maintained to within $\pm 1^{\circ}$ C by a Bruker variable temperature unit and were calibrated by thermocouple mea-

surements. The samples were lyophilized twice from D_2O and dissolved in 100% D_2O (Aldrich) containing 0.01 M sodium phosphate buffer (pD 7.0) and 1.0 M NaCl. The sample concentrations were 4–10 mM. t-Butanol-d was used as an internal reference and the chemical shifts reported in parts per million (ppm) relative to 2,2-dimethyl-2-silapentan-5-sulphonate (DSS). The field frequency lock was provided by the deuterium signal of D_2O .

3. Results and discussion

In the quest to evaluate the various factors affecting RNA duplex stability, we have established that base-stacking plays a significant role. The contribution from non-paired 3'-terminal (dangling) adenosines is a major factor influencing overall helical stability [10,11]. Internal A · A non-bonded pairs have been confirmed as centers of instability, for example, CAAUG:CAAUG $(T_{\rm m}>0^{\circ}{\rm C})$ [12] and AGACU:AGACU $(T_{\rm m}\sim25^{\circ}{\rm C})$ [13].

To evaluate the effect from opposing adenosine residues a series of synthetic oligoribonucleotides, reference self-complementary tetramer duplex, \overrightarrow{AGCU} , corresponding duplex with a 3'-dangling adenosine, \overrightarrow{AGCUA} , and the corresponding duplex with terminal non-bonded $\overrightarrow{A} \cdot \overrightarrow{A}$ pairs, \overrightarrow{AAGCUA} , were prepared.

Model studies on D-stem melting can be carried out using the duplex formation of AAGCUA:

$$\begin{array}{ccc}
A & A \\
2 & AAGCU & AGCU \\
\hline
 & UCGA \\
A & A
\end{array}$$

Variable temperature proton NMR was used to determine the stabilities as reflected in the melting temperature (T_m) of the synthetic duplexes (see table 1).

Clearly, terminal non-bonded adenosine residues contribute to duplex stability. The ability of the short duplex to unwind partially at the ends allows the terminal adenosines to exist in opposition to each other; however, the displacement is not of sufficient

Table 1
Melting temperature of synthetic duplexes

<i>T</i> _m (°C)
33
45
48

magnitude to interrupt the extended base stacking which is enhanced by these adenosines.

When these model studies are applied to tRNA secondary structure, D-stems flanked by two adenosines at the neck-loop junction, will be more stable than stems lacking adjacent non-bonded adenosines. Evolution of tRNA conformation [14] has resulted in a delicately balanced steric arrangement where a tertiary Sobell-type A · U base pair displaces an adenosine residue sufficiently to remain opposite another adenosine, but not to interfere with extended base-stacking interactions. The invariance of adenosines at positions 14 and 21 ensures a more stable D-stem as well as distinct loop formation due to strand separation. We note that a pair of purines also exists at the other extremity of the D-stem of most tRNAs.

Acknowledgement

The authors thank Phillippe Marlière for helpful discussion.

References

- [1] Gauss, D. H. and Sprinzl, M. (1981) Nucleic Acids Res. 9, r1-r23.
- [2] Dudock, B., DiPeri, C., Scilippi, K. and Reszelback, R. (1971) Proc. Natl. Acad. Sci. USA 68, 681-684.
- [3] Roe, B., Micheal, M. and Dudock, B. (1973) Nature New Biol. 246, 135-138.
- [4] Kim, S. H., Suddath, F. L., Quigley, G. J., McPherson, A., Sussman, J. L., Wong, A. H. J., Seeman, N. C. and Rich, A. (1974) Science 185, 435-439.
- [5] Rich, A. (1977) Acc. Chem. Res. 10, 388-425.
- [6] Holley, R. W., Apgar, J., Everett, G. A., Madison, J. T., Marquisee, M., Merrill, S. H., Penswick, J. R. and Zamir, A. (1965) Science 147, 1462.
- [7] Hilbers, C. W. and Shulman, R. G. (1974) Proc. Natl. Acad. Sci. USA 71, 3239-3242.
- [8] Haschmeyer, A. E. V. and Sobell, H. M. (1963) Proc. Natl. Acad. Sci. USA 50, 872.
- [9] Werstiuk, E. S. and Neilson, T. (1976) Can. J. Chem. 54, 2689-2696.
- [10] Neilson, T., Romaniuk, P. J., Alkema, D., Hughes, D. W., Everett, J. R. and Bell, R. A. (1980) Nucleic Acids Res. Symp. ser. 7, 293-311.
- [11] Alkema, D., Bell, R. A., Hader, P. A. and Neilson, T. (1981) J. Am. Chem. Soc. 103, 2866-2868.
- [12] Romaniuk, P. J., Hughes, D. W., Gregoire, R. J., Bell, R. A. and Neilson, T. (1979) Biochemistry 18, 5109-5116.
- [13] Alkema, D., Hader, P. A., Bell, R. A. and Neilson, T. (1981) submitted.
- [14] Cedergren, R. J., Sankoff, D., LaRue, B. and Grosjean, H. (1981) CRC Crit. Rev. Biochem. 11, 35-104.